A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation
نویسندگان
چکیده
Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters.
منابع مشابه
Smart gating membranes with in situ self-assembled responsive nanogels as functional gates
Smart gating membranes, inspired by the gating function of ion channels across cell membranes, are artificial membranes composed of non-responsive porous membrane substrates and responsive gates in the membrane pores that are able to dramatically regulate the trans-membrane transport of substances in response to environmental stimuli. Easy fabrication, high flux, significant response and strong...
متن کاملVertically-aligned carbon nanotubes infiltrated with temperature-responsive polymers: smart nanocomposite films for self-cleaning and controlled release.
We have demonstrated that the infiltration of temperature-responsive polymers (e.g., PNIPAAm) into vertically-aligned carbon nanotube forests created synergetic effects, which provided the basis for the development of smart nanocomposite films with temperature-induced self-cleaning and/or controlled release capabilities.
متن کاملReversible gating of ion transport through DNA-functionalized carbon nanotube membranes
Carbon nanotubes (CNTs) can be used to create unique fluidic systems for studying ion transport in nanochannels due to their well-defined geometry, atomically smooth and chemically inert surface, and similarity to transmembrane protein pores. Here, we report the reversible molecular gating of ion transport across DNA-functionalized CNT membranes. The diffusive transport rates of ferricyanide io...
متن کاملInteraction of some heavy metal ions with single walled carbon nanotube
The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...
متن کاملStimuli-responsive smart gating membranes.
Membranes are playing paramount roles in the sustainable development of myriad fields such as energy, environmental and resource management, and human health. However, the unalterable pore size and surface properties of traditional porous membranes restrict their efficient applications. The performances of traditional membranes will be weakened upon unavoidable membrane fouling, and they cannot...
متن کامل